1. Overview
  2. Why Burn?
  3. Getting started
    1. Examples
  4. Basic Workflow: From Training to Inference
    1. Model
    2. Data
    3. Training
    4. Backend
    5. Inference
  5. Building Blocks
    1. Backend
    2. Tensor
    3. Autodiff
    4. Module
    5. Learner
    6. Metric
    7. Config
    8. Record
    9. Dataset
  6. Performance
    1. Good practices
      1. Asynchronous Execution
      2. Kernel Fusion
      3. Kernel Selection
    2. Quantization
    3. Distributed Computing
  7. Custom Training Loop
  8. Saving & Loading Models
  9. Importing Models
    1. ONNX Model
    2. PyTorch Model
    3. Safetensors Model
  10. Models & Pre-Trained Weights
  11. Advanced
    1. Backend Extension
      1. Custom CubeCL Kernel
      2. Custom WGPU Kernel
    2. Custom Optimizer
    3. WebAssembly
    4. No-Std