- 1. Overview
- 2. Why Burn?
- 3. Getting started
- 3.1. Examples
- 4. Basic Workflow: From Training to Inference
- 4.1. Model
- 4.2. Data
- 4.3. Training
- 4.4. Backend
- 4.5. Inference
- 5. Building Blocks
- 5.1. Backend
- 5.2. Tensor
- 5.3. Autodiff
- 5.4. Module
- 5.5. Learner
- 5.6. Metric
- 5.7. Config
- 5.8. Record
- 5.9. Dataset
- 6. Performance
- 6.1. Good practices
- 6.1.1. Asynchronous Execution
- 6.1.2. Kernel Fusion
- 6.1.3. Kernel Selection
- 6.2. Quantization
- 6.3. Distributed Computing
- 7. Custom Training Loop
- 8. Saving & Loading Models
- 9. Importing Models
- 9.1. ONNX Model
- 9.2. PyTorch Model
- 9.3. Safetensors Model
- 10. Models & Pre-Trained Weights
- 11. Advanced
- 11.1. Backend Extension
- 11.1.1. Custom CubeCL Kernel
- 11.1.2. Custom WGPU Kernel
11.2. Custom Optimizer
- 11.3. WebAssembly
- 11.4. No-Std