Module module

Expand description

Module for the neural network module.

Structs§

Attribute
Attribute to print in the display method.
ConstantRecord
Record used for constant type implementing the module trait.
Content
Struct to store the attributes of a module for formatting.
DisplaySettings
Custom module display settings.
Ignored
Container to satisfy the Module trait for types that are not modules.
Param
Parameters are the fundamental building blocks of modules where they serve as containers for tensors that can be updated during training, and loaded during inference. If you don’t want to save the tensors and/or don’t want to update it during training, you don’t need this type to wrap your tensor.
ParamId
Parameter ID.
ParamMapper
Applies transformations when loading and saving parameters.
Quantizer
Describes how to quantize a module.
Reinitializer
Overrides float and int tensors of burn modules.
RunningState
A state that can be updated during the forward pass while being thread safe.

Enums§

Initializer
Enum specifying with what values a tensor should be initialized

Traits§

AutodiffModule
Module with auto-differentiation backend.
Module
Trait for all neural network modules.
ModuleDisplay
Trait to implement custom display settings for a module.
ModuleDisplayDefault
Default display settings for a module.
ModuleMapper
Module mapper trait for transforming module parameters.
ModuleVisitor
Module visitor trait for traversing and inspecting module parameters.
Parameter
Trait that defines what is necessary for a type to be a parameter.

Functions§

extract_type_name
Extracts the short name of a type T
list_param_ids
List all the parameter ids in a module.

Type Aliases§

Devices
Type alias to Vec<B::Device> which supports no_std environments, but automatically using the alloc crate.

Derive Macros§

Module
Derive macro for the module.